Extremer Exoplanet hat eine komplexe und exotische Atmosphäre

Ein internationales Team mit Forschenden der Universität Bern und der Universität Genf sowie des Nationalen Forschungsschwerpunkts (NFS) PlanetS hat die Atmosphäre eines der extremsten bekannten Planeten detailliert analysiert. Die Ergebnisse von diesem heissen, Jupiter-ähnlichen Planeten, der erstmals mit Hilfe des Weltraumteleskops CHEOPS charakterisiert worden war, könnten Astronominnen und Astronomen dabei helfen, die Komplexität anderer Exoplaneten zu verstehen – darunter auch die von erdähnlichen Planeten.

Die Atmosphäre der Erde ist keine einheitliche Hülle, sondern besteht aus verschiedenen Schichten, die jeweils charakteristische Eigenschaften haben. Die unterste Schicht, die sich vom Meeresspiegel bis zu den höchsten Berggipfeln erstreckt – die Troposphäre – enthält etwa den meisten Wasserdampf und ist somit die Schicht, in der die meisten Wetterphänomene auftreten. Die darüber liegende Schicht – die Stratosphäre – enthält die berühmte Ozonschicht, die uns vor der schädlichen ultravioletten Strahlung der Sonne schützt.

In einer neuen Studie, die soeben in der Fachzeitschrift Nature Astronomy erschienen ist, zeigt ein internationales Forschungsteam unter der Leitung der Universität Lund erstmals, dass auch die Atmosphäre eines der extremsten bekannten Planeten ähnlich ausgeprägte Schichten aufweisen könnte – wenn auch mit sehr unterschiedlichen Eigenschaften.

Ein exotischer Cocktail als Atmosphäre

WASP-189b ist ein Planet ausserhalb unseres eigenen Sonnensystems, der 322 Lichtjahre von der Erde entfernt ist. Umfangreiche Beobachtungen mit dem Weltraumteleskop CHEOPS im Jahr 2020 ergaben unter anderem, dass der Planet 20-mal näher an seinem Wirtsstern ist als die Erde an der Sonne und eine Tagestemperatur von 3’200 Grad Celsius aufweist. Neuere Untersuchungen mit dem HARPS-Spektrographen am La Silla-Observatorium in Chile ermöglichten den Forschenden nun erstmals einen genaueren Blick auf die Atmosphäre des jupiterähnlichen Planeten.

«Wir haben das die Atmosphäre des Planeten durchdringende Licht des Wirtssterns gemessen. Dabei absorbieren Gase in seiner Atmosphäre einen Teil des Sternenlichts, ähnlich wie Ozon einen Teil des Sonnenlichts in der Erdatmosphäre absorbiert, und hinterlassen so ihren charakteristischen ‘Fingerabdruck’. Mit Hilfe von HARPS konnten wir die entsprechenden Stoffe der Atmosphäre identifizieren», erklärt die Hauptautorin der Studie und Doktorandin an der Universität Lund, Bibiana Prinoth. Die Gase, die ihren Fingerabdruck in der Atmosphäre von WASP-189b hinterlassen haben, enthielten nach Angaben der Forschenden unter anderem Eisen, Chrom, Vanadium, Magnesium und Mangan.

Eine «Ozonschicht» auf einem glühend heissen Planeten?

Eine besonders interessante Substanz, die das Team fand, ist ein titanhaltiges Gas: Titanoxid. Während Titanoxid auf der Erde sehr selten ist, könnte es in der Atmosphäre von WASP-189b eine wichtige Rolle spielen – ähnlich derjenigen von Ozon in der Erdatmosphäre. «Titanoxid absorbiert kurzwellige Strahlung, wie etwa ultraviolette Strahlung. Seine Entdeckung könnte daher auf eine Schicht in der Atmosphäre von WASP-189b hinweisen, die ähnlich wie die Ozonschicht auf der Erde mit der Sterneneinstrahlung interagiert», erklärt Studien-Koautor Kevin Heng, Professor für Astrophysik an der Universität Bern und Mitglied des NFS PlanetS.

Tatsächlich fanden die Forschenden Hinweise auf eine solche und andere Schichten auf dem ultraheissen, jupiterähnlichen Planeten. «In unserer Analyse sahen wir, dass die ‘Fingerabdrücke’ der verschiedenen Gase im Vergleich zu unserer Erwartung leicht verändert waren. Wir glauben, dass starke Winde und andere Prozesse diese Veränderungen hervorrufen könnten. Und da die Fingerabdrücke der verschiedenen Gase auf unterschiedliche Weise verändert wurden, deutet dies unserer Meinung nach darauf hin, dass sie in verschiedenen Schichten vorkommen – ähnlich wie die Fingerabdrücke von Wasserdampf und Ozon auf der Erde aus der Ferne unterschiedlich verändert erscheinen würden, weil sie meist in verschiedenen atmosphärischen Schichten vorkommen», erklärt Prinoth. Diese Ergebnisse könnten die Art und Weise verändern, wie Exoplaneten erforscht werden.

Eine andere Art, Exoplaneten zu betrachten

«In der Vergangenheit sind Astronominnen und Astronomen oft davon ausgegangen, dass die Atmosphären von Exoplaneten als eine einheitliche Schicht existieren und haben versucht, sie als solche zu verstehen. Unsere Ergebnisse zeigen aber, dass auch die Atmosphären von intensiv bestrahlten Gasriesenplaneten komplexe dreidimensionale Strukturen aufweisen», betont der Mitautor der Studie und Dozent an der Universität Lund Jens Hoeijmakers.

«Wir sind davon überzeugt, dass wir die dreidimensionale Beschaffenheit der Atmosphären berücksichtigen müssen, um diese und andere Planetentypen – auch solche, die der Erde ähnlicher sind – vollständig verstehen zu können. Dies erfordert Innovationen bei den Datenanalysetechniken, der Computermodellierung und der grundlegenden Atmosphärentheorie", so Kevin Heng abschliessend.

Angaben zur Publikation:

Titanium oxide and chemical inhomogeneity in the atmosphere of the exoplanet WASP-189 by B. Prinoth et al. (2022), Nature Astronomy.
DOI : 10.1038/s41550-021-01581-z
https://www.nature.com/articles/s41550-021-01581-z

Berner Weltraumforschung: Seit der ersten Mondlandung an der Weltspitze

Als am 21. Juli 1969 Buzz Aldrin als zweiter Mann aus der Mondlandefähre stieg, entrollte er als erstes das Berner Sonnenwindsegel und steckte es noch vor der amerikanischen Flagge in den Boden des Mondes. Dieses Solarwind Composition Experiment (SWC), welches von Prof. Dr. Johannes Geiss und seinem Team am Physikalischen Institut der Universität Bern geplant und ausgewertet wurde, war ein erster grosser Höhepunkt in der Geschichte der Berner Weltraumforschung.

Die Berner Weltraumforschung ist seit damals an der Weltspitze mit dabei: Die Universität Bern nimmt regelmässig an Weltraummissionen der grossen Weltraumorganisationen wie ESA, NASA, ROSCOSMOS oder JAXA teil. Mit CHEOPS teilt sich die Universität Bern die Verantwortung mit der ESA für eine ganze Mission. Zudem sind die Berner Forschenden an der Weltspitze mit dabei, wenn es etwa um Modelle und Simulationen zur Entstehung und Entwicklung von Planeten geht.

Die erfolgreiche Arbeit der Abteilung Weltraumforschung und Planetologie (WP) des Physikalischen Instituts der Universität Bern wurde durch die Gründung eines universitären Kompetenzzentrums, dem Center for Space and Habitability (CSH), gestärkt. Der Schweizer Nationalsfonds sprach der Universität Bern zudem den Nationalen Forschungsschwerpunkt (NFS) PlanetS zu, den sie gemeinsam mit der Universität Genf leitet.

28.01.2022